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Periodic forcing in viscous fingering of a nematic liquid crystal
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Viscous fingering of an air-nematic interface in a radial Hele-Shaw cell is studied when periodically switch-
ing on and off an electric field, which reorients the nematic and thus changes its viscosity, as well as the
surface tension and its anisotropy~mainly enforced by a single groove in the cell!. Undulations at the sides of
the fingers are observed that correlate with the switching frequency and with tip oscillations that give maximal
velocity to smallest curvatures. These lateral undulations appear to be decoupled from spontaneous~noise
induced! side branching. It is concluded that the lateral undulations are generated by successive relaxations
between two limiting finger widths. The change between these two selected pattern scales is mainly due to the
change in the anisotropy. This scenario is confirmed by numerical simulations in the channel geometry, using
a phase-field model for anisotropic viscous fingering.
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I. INTRODUCTION

Interfacial instabilities constitute a diverse domain in no
equilibrium pattern formation, with examples ranging fro
biology ~e.g., bacterial growth! to mathematics~Stefan prob-
lems!, passing by physical systems as flows in porous me
solidification, electrodeposition or flame propagation@1#.

Progress in this domain has usually been made by stu
ing prototype systems as solidification or viscous fingeri
The latter deals with the destabilization of the interface
tween two immiscible fluids when the more viscous fluid
displaced by the less viscous one, which is either injecte
an end of a channel-shaped cell~channel geometry! or from
the center of the cell~radial geometry!—for a review see
Ref. @2#. This initial destabilization leads to the formation
fingers in both geometries, which finally restabilize into
single stationary finger in the channel one. However, a s
ficient amount of noise may cause this single finger to
split. In contrast, in the isotropic, radial cell, fingers do n
stabilize, but repeatedly tip split to form more and more fi
gers@3#.

An external perturbation, however, can dramatica
change the fingers and can even suppress the tip splittin
both geometries. A bubble of gas trapped just in front of
advancing finger causes tip stabilization and~eventually! in-
tensive and very regular side branching both in the radial@4#
and channel@5# geometries. Engraving a grid on one of th
plates of the radial cell introduces an anisotropy, which
strong enough, also inhibits tip splitting and produces d
drites and faceted structures, resulting in a rich morphol
diagram @6,7#. Different etched lattices give a variety o
highly branched structures whose symmetry depends on
of the lattice when the anisotropy it introduces is stro
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enough@8#. The replacement of the grid by a set of paral
grooves@9# has produced an even more complicated m
phology diagram than that presented in Ref.@6#. With a
single groove running from the center to the edge of the
the tips split in all directions except that of the groove@10#,
in which a much faster growing dendritic structure is o
served, and the whole pattern is very similar to that repor
in Ref. @4#. An intrinsic anisotropy, such as that of a liqu
crystal used as the more viscous fluid, has also been sh
to stabilize the tips and yield growth with side branch
@11,12#. All these experiments have demonstrated that diff
ent kinds of anisotropy affect viscous fingering as that of
surface tension does for dendritic crystal growth, i.e., sta
lizing finger tips, so that, if the natural noise is stron
enough, destabilization of the finger takes place only at
sides in the form of side branches.

In the channel geometry, Rabaudet al. have taken advan
tage of the fact that fingers remain stable up to higher ca
lary numbers once the introduced anisotropy has suppre
tip splitting to artificially induce side branching by means
an external perturbation@13#. This should enable one to
study the side branching in a more controlled way, and a
the coupling between the perturbation and the branching
namics. They obtain side branches using a localized dis
bance, namely, a knot on the thread that provides the an
ropy. Pressure modulation also causes side branching in
case of a thread, since, according to them, it mainly indu
localized initial disturbances near the intersection of the
terface with the thread. In contrast, in the case of two op
site grooves in the middle of the channel, the lateral wa
caused by such sinusoidal pressure oscillations are symm
cal, and, most significantly, of limited amplitude.

This brings us to the fundamental problem of the gene
response of a pattern-forming interface to thenonlocalized
periodic forcing of its dynamics. We study this response a
the possible formation of lateral waves in an air finger inva
ing a liquid crystal in the radial geometry, where the boun
ary conditions would not limit their amplitude, when period
cally forcing the system by a modulated electric fie
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R. FOLCHet al. PHYSICAL REVIEW E 64 056225
perpendicular to the cell. A single groove running over t
injection point stabilizes the finger tips in its direction. Th
nematic director tends to align with the electric field wh
this is switched on, and returns roughly to the cell pla
when this is switched off. The flow properties depend on
orientation of the director, so that we expect to change
control parameters of the dynamics whenever we switch
field on or off. The use of a square wave for the amplitude
the electric field~switching it on and off instantly! enables us
to observe the relaxation of the pattern to a param
quench.

We find the tip radius to relax very quickly to two differ
ent values when the field is switched on and off, and that
pulsating tip induces symmetrical lateral undulations.
nally, we explain these lateral undulations as the trace
periodic change in the selected tip radius, caused mainly
the change in the effective anisotropy due to the interp
between the liquid crystal and the groove. Back to the ch
nel geometry, we confirm this scenario by numerically in
grating a phase-field model for viscous fingering@14# in
which the anisotropy is switched between two different v
ues. Here, the alternate relaxation towards two different
lected pattern scales is particularly clear, since the symm
cal lateral undulations saturate, as the finger oscilla
between two different selected widths.

This mechanism might be relevant to experiments
which similar observations have been made. For instance
the case of symmetrical undulations at the sides of a fin
perturbed by a bubble on its tip, in which the tip curvatu
oscillates@4,5,13# and the lateral undulations in the chann
geometry also lie between two well-defined asympto
widths, with a Saffman-Taylor finger as outer envelop@5,13#.
Another example could be the sinusoidal modulation of
injection pressure in fingers grown with two parallel groov
which also displayed symmetrical lateral waves of limit
amplitude@13#.

The rest of the paper is organized as follows: In Sec. II
present the experimental setup and observations. Sectio
then introduces and exploits the theoretical framew
within which we explain these experimental results, and S
IV, the numerical method for checking the outcoming h
pothesis in the channel geometry. The conclusions reac
are summarized in Sec. V.

II. EXPERIMENTAL SETUP AND RESULTS

The experiments were performed in a radial Hele-Sh
cell. This was assembled from two glass plates coated wi
conducting layer of SnO2, which served as electrode. Th
bottom plate, of dimensions 160 mm3160 mm and thick-
ness 5.5 mm, had a hole of 1 mm diameter in the cente
an inlet for the air. On the coated face of the upper pl
(140 mm3140 mm and thickness 3.1 mm) we engrave
groove following its diagonal. The plates were separated
d50.32 mm ord50.19 mm thick spacers. The inner fac
of the plates corresponded to the coated ones, so tha
electrodes directly faced each other, with no glass in
tween.

We applied an ac electric fieldE of frequency 1 kHz
05622
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perpendicular to the plates, and switched it on/off with
frequencyn. The ‘‘semiperiods’’ during whichE was on
(ton) and off were unequal. Their ratio was chosen so t
fingers advanced a similar distance in each ‘‘semiperio
which resulted in more apparent effects. Thus, a filling co
ficient of j5tonn50.6760.03 was found to be convenien
and it was used in all the experiments presented here.

Initially, the cell was filled with the commercial liquid
crystal mixture RO-TN-430~La Roche!, with positive di-
electric anisotropy,«a5« i2«'517.6 (« i and «' are the
components of the uniaxial dielectric tensor parallel and p
pendicular to the director, respectively!, and a broad tem-
perature range of the nematic phase, fromTm5210 °C up to
TN→I570 °C ~experiments were performed at room tem
peratureT523 °C). The mixture was doped with dichroi
blue dye D16~BDH! in order to enhance the contrast at t
air–nematic-liquid-crystal interface.

Then, after being filtered, air was injected through t
hole of the bottom plate at an excess pressurepe , regulated
by a ported precision regulator~Norgren 11-818-100! with
an accuracy of60.03 bar, and further decreased and sta
lized by a unit for pressure reduction. The path of the air w
regulated by two three-path solenoid valves, andpe was
measured with a precision pressure meter~Watson & Smith!,
with an accuracy of61 mbar.

As the air displaced the liquid crystal, a camera record
the growth process, and images were fed into a PC for dig
analysis, with a spatial resolution of 512 pixels3512 pixels
and a 256 gray scale for each pixel. With the mag
fication used, a spatial resolution of (0.241 m
30.166 mm)/ pixel was determined.

Experimental results are presented in Figs. 1–4. In
cases, two air fingers whose tips do not split grow along
groove, at each side of the injection hole. Two much slow
air bumps form at each side of the groove and perpendic
to it ~Figs. 1, 3 and 4!, and their tips can split@Fig. 4~a!#.

At low excess pressures (pe55 mbar, Figs. 1–3! the two
stable viscous fingers along the groove do not show
lateral undulations with (E on! or without (E off! an ac field
kept constant@Fig. 1~a! and Fig. 1~b!, d5320 mm, and Fig.
3~a! and Fig. 3~b!, d5190 mm]. However, fingers grown
with the field@Fig. 1~b! and Fig. 3~b!# are thinner and slowe
~compare the times indicated in the captions! than their ana-
logues grown without it@Fig. 1~a! and Fig. 3~a!, respec-
tively#.

If one then periodically switches on and off the fie
~modulated E), the tips undergo successive curvatu
changes that induce formation of undulations at the side
the two stable fingers in a strong correlation with the switc
ing frequencyn, as shown for two different ones in Fig. 1~c!
and Fig. 1~d!, where interfaces are displayed each time
field is switched on/off. Note that the maxima and minima
these lateral undulations in those figures roughly over
with the profiles of the fingers grown in the same conditio
but with the field kept off@Fig. 1~a!# and on @Fig. 1~b!#,
respectively.

Similar to the solidification of a nematic liquid crysta
into a smecticB reported in Ref.@15#, above a certain
switching frequencync the main fingers show no lateral un
5-2
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PERIODIC FORCING IN VISCOUS FINGERING OF A . . . PHYSICAL REVIEW E64 056225
FIG. 1. Air-nematic interfaces at subsequent times.d
5320 mm, pe55 mbar.~a! E off, t50.32 s, 0.64 s, 0.96 s, 1.32 s
~b! E50.32 V/mm on, t51.08 s, 2.20 s, 3.32 s, 4.44 s;~c!–~e!
modulatedE, j50.68: ~c! n50.667Hz, t50.4 s, 1.44 s, 1.84 s
2.64 s;~d! n51.01 Hz,t50.72 s, 1.04 s, 1.68 s, 2.04 s, 2.68 s, 2.
s; ~e! n54.55 Hz,t50.52 s, 1.04 s, 1.56 s, 2.08 s.~c! and~d! show
the interfaces each timeE was switched on/off.

FIG. 2. Position of the tip of the main fingers in Fig. 1 vs tim
Filled ~empty! symbols denoteE on ~off!. Circles correspond to the
experiments with field kept off~empty! of Fig. 1~a! or on ~filled! of
Fig. 1~b!, whereas the other symbols stand for the different frequ
cies with which the field was switched on/off: squares, triang
and diamonds for Figs. 1~c!, 1~d!, and 1~e!, respectively.
05622
dulations@Fig. 1~e!#. Their widths are then intermediate, ly
ing between those of Fig. 1~a! (E off! and Fig. 1~b! (E on!.

Figure 2 plots the position of the tip of the fingers in Fi
1 vs time. Here it is apparent that fingers grow faster withE
off @wider fingers of Fig. 1~a!, empty circles# than withE on
@thinner fingers of Fig. 1~b!, filled circles#, but also that the
oscillations of the tip curvature in time when periodical
switching on/off the field of Fig. 1~c! and Fig. 1~d! are ac-
companied by tip velocity oscillations~squares and triangles
respectively!. In each oscillation, when the field is off~empty
squares and triangles! and on ~filled ones! the velocity
roughly attains the values obtained for fingers grown w
the field kept off~empty circles! and on~filled circles! all the
time, respectively. Even forn.nc , when no lateral undula-
tions occur@Fig. 1~e!#, the velocity increases and decreas
significantly when the field is switched off~empty diamonds!
and on~filled diamonds!, respectively, although it is not clea
whether it attains the same values than for a constant fie

With the samepe55 mbar but a smaller cell gapd
5190 mm ~Fig. 3!, all the previous qualitative observation
are reproduced, but now all fingers are narrower@than in Fig.
1, compare Fig. 3~a! with Fig. 1~a! and Fig. 3~b! with Fig.
1~b!#.

-
,

FIG. 3. Same as Fig. 1, butd5190 mm. ~a! E off, t50.24 s,
0.60 s, 1.00 s, 1.40 s;~b! E50.55 V/mm on,t50.60 s, 1.12 s, 1.72
s, 2.24 s.

FIG. 4. Same as Fig. 3, butpe522 mbar.~a! E off, t50.04 s,
0.12 s, 0.20 s, 0.24 s;~b! E50.55 V/mm on,t50.08 s, 0.16 s, 0.28
s, 0.36 s;~c! modulatedE50.58 V/mm, n58.42 Hz,j50.68, t
50.12 s, 0.20 s, 0.28 s, 0.36 s.
5-3
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R. FOLCHet al. PHYSICAL REVIEW E 64 056225
At higher excess pressure (pe522 mbar! and the same
cell gap d5190 mm as in Fig. 3, the fingers along th
grooves show a weak, uncorrelated lateral noise both witE
off and on @Fig. 4~a! and Fig. 4~b!#, whereas their overal
widths roughly stay the same@compare with Fig. 3~a! and
Fig. 3~b!, respectively#. When periodically switching the
field on and off, the lateral undulations correlated with t
switching frequency of Fig. 1~c! and Fig. 1~d! reappear, but
now superimposed to and apparently decoupled from the
correlated lateral noise@Fig. 4~c!#.

Also at this higher excess pressurepe522 mbar do the
regular lateral undulations disappear above a certain
quencync and leave the bare uncorrelated noise of Fig. 4~a!
and Fig. 4~b!. This upper frequencync shows a roughly lin-
ear dependence on the excess pressurepe .

III. THEORETICAL DISCUSSION

We now present a possible simplified theoretical fram
work to explain the experimental observations.

The shear viscosity of a nematic liquid crystal flowing
a planar cell depends on the orientation of its director: T
highest viscosity is achieved with the director perpendicu
to the cell~homeotropic alignment!. With the director lying
on the cell plane~planar alignment! the viscosity is lower
and anisotropic: higher with the director perpendicular th
parallel to the flow.

The director and the velocity fields are coupled by no
linear nematohydrodynamic equations —see, e.g., R
@16,17#. Thus, when the electric field is off, the flow force
the director to be roughly in the plane of the cell~planar
alignment case!. Moreover, the director tends to align itse
with the flow velocity in a certain pressure range. The lat
together with the mentioned anisotropy of the viscosity in
cell plane respect to the director orientation, results in a
cosity that depends on the velocity direction. This causes
viscosity to be nonuniform and anisotropic with respect
the direction of the flow. This anisotropy turns out to be t
most important effect, since, if strong enough, it stabiliz
the finger tips, thus switching from a tip splitting to a sid
branching mode@11#. This can be understood by mappin
this anisotropy in the viscosity to an effective anisotropy
the surface tension@12#.

However, experiments performed without any groo
found no regime for which this anisotropy was stron
enough to clearly stabilize the finger tips for the liquid cry
tal mixture used here@18#, whereas the introduction of th
groove did stabilize them. Therefore, as a first approxim
tion, we will neglect the anisotropic effect of the direct
alignment in front of that of the groove: On one hand, w
will consider this planar alignment case to have a uniq
uniform, and isotropic average viscosity; on the other ha
we will not consider the effective anisotropy in the surfa
tension coming from that in the viscosity, but only the stro
ger anisotropy introduced by the groove. Actually consid
ing both of them does not change qualitatively the simulat
results.

An ac electric field also exerts a torque on the direct
For a liquid crystal with positive dielectric anisotropy,«a
05622
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.0 as ours, and a field perpendicular to the plates, the e
tric torque competes with the shear one, trying to align
director with the field, i.e., perpendicular to the plates~ho-
meotropic alignment!. Therefore, the viscosity withE on
should now be even more isotropic in the shear plane.

Consequently, both withE off and on we will consider a
constant, isotropic viscosity. The only difference between
viscosities with and without electric field will be that th
viscosity withE on should always be larger than withE off,
since the field favors the homeotropic alignment. Note t
this inequality of the viscosities with and without field wi
hold even for an incomplete alignment.

Thus, the theoretical framework will be that of the sta
dard viscous fingering equations, except for the dimensi
less surface tensionB0[s/(pel c) ~with s the surface ten-
sion andl c an arbitrary length scale!, which will read

B5B0~12a cos2f!, ~3.1!

wheref is the angle between the single groove used in
experiments and the normal to the interface, anda represents
the twofold anisotropy induced by the groove. Grooves a
grids have usually been modeled by such an anisotrop
the surface tension~see, e.g., Ref.@19#!. This represents a
strong simplification, but we do not expect it to affect th
conclusions of this paper in any fundamental way.

Each time we switchE on or off, we change the directo
orientation, and thus some physical parameters of the mo
which should result in a change in its dimensionless con
parameters, namely,B0 and a, or in the time scale of the
dynamics, 12m l c

2/(d2pe), wherem is the viscosity. Since we
always switchE on or off instantly, the adimensionalizatio
leading to this set of control parameters remains valid, e
if their value is periodically switched. Before using eviden
from the experiments, let us discuss for clarity how can th
control parameters and time scale be expected to chana
priori .

The time scale 12m l c
2/(d2pe) can change only through

change in the viscositym. Indeed, the change in the tim
scale was measured directly for the same mixture from
growth of a circular interface in the absence of grooves w
E on and off, and it was found to be a factor 3.7 slower w
E on @18#. We thus know that the viscosity is 3.7 times larg
with E on. ~Note that this does not alterB05s/(pel c), since
it does not depend onm for an experiment at constant exce
pressure, whereas it does for the constant injection rate c
for which its definition is different!. B05s/(pel c) could
only be altered by a variation in the surface tensions. Such
a variation has been measured for several liquid crystals,
s has been found to be 20–50% smaller with the direc
parallel to the air-nematic interface~roughly ourE on case!
than perpendicular to it@20# ~closer toE off!.

As for the anisotropya due to the groove, it could be
changed by the following effect: The director inside t
groove might keep the planar alignment to some extent e
with E on, since the conducting layer was removed from
etched region when engraving the groove. In that case,
viscosity would be lower inside than outside the groove w
E on, thus reinforcing the mobility enhancement of t
5-4



e

th
e
re

th
lle
c
e-

lle

d
n

a
f

al
ow
b

d
se

er

in
r
io
i

fa
us
th
si

ies

o
n
t

a
e

on
ff
on

ig
th
in
tio
ug
e

of
and

isot-
can
the
d
cy,
se

fin-
aller
ge
lly,
ch
it

ery
ent

the

ake
f-
ues

lly

the

-
too
to
h
ase

al’’
de

ned
ize

and
he
en

an
e

nor

be
on-
ini-
a

PERIODIC FORCING IN VISCOUS FINGERING OF A . . . PHYSICAL REVIEW E64 056225
groove itself~higher gapd), and, therefore, increasing th
effect of the groove~the anisotropya in our model!.

Now, consider the experimental results reported in
previous section, and first of all, those for a field kept eith
on or off during all the experiment. The main fingers we
found to be slower and thinner withE on. Their smaller
velocity is explained by the increase in the time scale of
dynamics due to that in the viscosity, whereas their sma
width should be understood as a decrease in the sele
finger tip radius for a given length of the finger, which r
sults in a visually overall thinner finger.~Thus we will talk
about thinner and wider fingers to refer to larger and sma
tip curvatures at a given finger length, respectively!. In our
model, this decrease in the selected length scale could be
to either a decrease in the dimensionless surface tensioB0
or an increase in its anisotropya.

To check the two possibilities, we variedB0 and a by
means other than reorienting the director. In order to incre
a, we decreased the cell gapd, which is the standard way o
increasing the effect of a groove or grid@6,19#, and which
does not affect anything else in our model but the time sc
As mentioned in the previous section, the fingers do narr
Note also that very similar widths are obtained either
switching on the field@Fig. 1~b!# or by increasinga through
a decrease ind @Fig. 3~a!#. This proves that the observe
finger narrowing when switching on the field can be cau
by an increase ina. Consistently with this hypothesis, ifa is
further increased by switching on the field with this low
cell gapd, the fingers narrow more@Fig. 2~b!#.

In order to decreaseB0, we kept this lower cell gap and
increased the injection pressure up tope522 mbar.B0 must
have been actually lowered, since the interfaces obta
were much noisier, and the fingers growing perpendicula
the groove even tip split, as reported in the previous sect
~The amount of noise necessary for a finger to tip split
known to decrease with decreasing dimensionless sur
tensionB0 @21#!. However, also as explained in the previo
section, there was no significant width change. The fact
a change by a factor 4.4 in the dimensionless surface ten
B0 when increasing the injection pressure frompe55 mbar
up to pe522 mbar causes no visible width change impl
that the mentioned change of 20–50% inB0 through the
change in the surface tensions measured for other liquid
crystals cannot cause it either. We are, therefore, led to c
clude that it is the anisotropy in the surface tension and
the dimensionless surface tension itself what accounts for
observed width change.

Once we have understood how the introduction of
electric field affects the width and velocity of the fingers, w
are in a position to explain the experimental observati
when the electric field is periodically switched on and o
One would be tempted to understand the lateral oscillati
in Fig. 1~c!, Fig. 1~d!, and Fig. 4~c! as standard side
branches, i.e., due to the amplification of perturbations or
nating on the tip of the fingers. One could thus think that
periodic change in some control parameter when switch
on and off the field provided the necessary local perturba
on the tips to induce side branching, or that a large eno
perturbation due to the natural noise was further amplifi
05622
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through a resonance phenomenon with the frequency
change of this parameter and thus also produced visible
regular side branches, as seen in related problems@15#. In
this case, the relevant control parameter should be the an
ropya, since the viscosity only enters the time scale, and
thus not affect the shape of the pattern. In this scenario,
fact that Fig. 1~e! shows no oscillations would be interprete
as the result of being too far from the resonance frequen
and the velocity oscillations seen in Fig. 2 would be tho
sometimes associated with side branching.

However, the velocity turns out to decrease when the
ger tip narrows, as opposite to the usual case. This sm
velocity of thinner tips can only be explained by the chan
in the time scale due to the change in the viscosity. Actua
we visually observe the velocity to change instantly ea
time the field is switched on and off in each period, and
roughly attains in each semiperiod when the field is on~off!
the same value than in a finger grown all the time withE on
~off!, as explained in the previous section.

The finger tips are also observed to narrow at the v
moment the field is switched on and to widen at the mom
it is switched off, and the minima~maxima! of the lateral
undulations also have approximately the same width than
finger with E kept on~off!, as also explained above.

All this suggests that the lateral undulations are the w
left by a tip quickly and alternately relaxing to the two di
ferent selected radii corresponding to the two different val
~one for E on and one forE off! of the relevant control
parameter, the groove anisotropya.

Thus, the obtained undulated fingers when periodica
switching on and off the field of Fig. 1~c! and Fig. 1~d!
themselves are the result of alternately relaxing between
thinner@Fig. 1~b!# and wider@Fig. 1~a!# fingers grown all the
time with or without the field, respectively. With this expla
nation, the absence of significant lateral undulations for
high frequencies is due to the lack of time for the finger
relax to any of the two widths within each period, whic
should result in an intermediate width, as is indeed the c
in Fig. 1~e!.

This mechanism seems to be decoupled from ‘‘natur
~noise induced! side branching, since, when this natural si
branching is already present with a field kept off and on@Fig.
4~a! and Fig. 4~b!, respectively#, periodically switching on
and off the field seems just to superimpose the mentio
wake of tip radius changes, but not to eliminate or regular
the previously present modes@Fig. 4~c!#. The fact that the
two effects be decoupled supports the idea that the width
velocity oscillations observed when switching on and off t
field are the result of the relaxation back and forth betwe
two different stationary widths and velocities, rather th
that of the amplification of perturbations coming from th
tip.

Indeed, instantly switching on and off the field with a
certain period does not introduce any extra time scale
control parameter in the dynamicsof each semiperiodduring
which the field is either on or off. Each semiperiod can
understood as the relaxation with certain values of the c
trol parameters towards a new steady state from a given
tial condition. Just that this initial condition turns out to be
5-5
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state more or less close to the steady state correspondi
different values of the control parameters. Since no ex
time scale is introduced, no coupling with the natural no
was to be expected.

However, varying the amplitude of the field with say
sinusoidal wave instead of a square one would introduc
new time scale the period of the wave, so that the dynam
would change. The injection pressure in viscous fingering
a channel has indeed been varied with such a sinuso
wave. The interesting point is that the tip velocity follows t
pressure modulation and the pattern obtained also disp
lateral undulations of limited amplitude, which are sym
metrical as long as no external element breaks this symm
~case of two parallel grooves! @13#. Also a bubble on the tip
of a finger can induce the tip curvature to oscillate perio
cally and give rise to symmetrical lateral undulations o
well-defined amplitude~in the channel geometry! and peri-
odicity. The amplitude is such that the outer envelope of
wave is a larger Saffman-Taylor finger in the channel, a
the periodicity is correlated to the frequency of oscillation
the tip @4,5,13#.

All these observations with pressure modulation
bubbles match our own observations with electric fie
modulation, so that the mechanism of successive relaxat
between two different steady states that we propose m
also be relevant to these other experiments. Our case, h
ever, is particularly clear thanks to the use of a square w
to modulate the electric field.

In conclusion, two different limiting cases seem to lead
the formation of lateral waves:~i! The amplification of small
perturbations when advected from the tip to the sides of
finger ~e.g., natural, noise-induced side branching!. ~ii ! Suc-
cessive and alternate relaxations between two different fin
widths, also advected from the tip to the sides, when
some reason the tip curvature oscillates~e.g., periodic, in-
stant changes in a control parameter affecting selection a
our experiments!. Of course, the lateral undulations caus
by the successive relaxations~ii ! might also be damped o
amplified as in~i!, and it can be difficult to tell whether a
particular deformation of the tip is rather a small perturbat
~i! or an overall curvature change~ii !, so that we feel that
both mechanisms should be regarded as complementary
experiments where a large perturbation is used to force
dynamics might be expected to be mixed cases.

IV. NUMERICAL RESULTS AND DISCUSSION

The difficulty to check the explanation of the lateral u
dulations in terms of successive changes in the sele
width proposed in the previous section lies in the fact that
finger width is not well defined. The sides of~anisotropic!
viscous fingers in the radial geometry are not parallel, a
most importantly, anisotropic fingers do not reach a ste
tip radius nor velocity. There is indeed a selection mec
nism, but the first keeps growing and the latter decreas
with time ~see Ref.@22#!. Therefore, it is especially useful t
perform numerical simulations of anisotropic fingers in t
channel geometry to check out this scenario, since their s
are parallel, and, above all, their widths and velocities
05622
to
a
e

as
cs
n
al

ys

try

-

e
d
f

r

ns
ht
w-
ve

e

er
r

in

n

nd
e

ed
e

d,
y
-
g

es
o

saturate and are easy to compare with one another. Note
the experiments in the channel geometry with press
modulation or bubbles mentioned in the previous sect
@13# are not clear enough for that purpose, since the sele
width keeps changing all the time as the effective cont
parameters should oscillate sinusoidally in response t
sinusoidal pressure or bubble forcing. In contrast, we w
instantly change the value of the relevant control param
~the anisotropy due to the groovea) in our simulations to
mimic the switching on and off of the electric field.

On the other hand, it is well known that a thinner fing
grows faster in dimensionless time, although the experim
tal observation is just the opposite in real time. This mea
that the change in the time scale due to the change in
viscosity~3.7 times larger withE on! must be dominant ove
the change in dimensionless time. The question is whe
there actually exists a range of change of the groove ani
ropy a that yields the observed narrowing of the finger b
also respects the fact that thinner fingers grow slower in
time.

To answer this question and check the proposed expla
tion of the lateral undulations, we numerically integrate t
described theoretical model, but we run it in the chan
geometry. We use the phase-field model for viscous fing
ing presented and tested in Ref.@14#. The only change in the
model is that we now use the anisotropic surface tens
given by Eq.~3.1!. We recall the model,

ẽ
]c

]t
5¹2c1c¹W •~u¹W c!1

1

e

1

2A2
g~u!~12u2!,

~4.1!

e2
]u

]t
5 f ~u!1e2¹2u1e2k~u!u¹W uu1e2ẑ•~¹W c3¹W u!,

~4.2!

wherec is the stream function,u is the phase field,c[(m
2m0)/(m1m0) is the viscosity contrast (m, m0 are the vis-
cosities of the liquid crystal and the air, respectively! ande,
ẽ are model parameters that must be small to recover
sharp-interface equations of the theoretical model. We h
definedf (u)[u(12u2), andg(u)/2[ ŝ(u)•$¹W @B(u)k(u)#

1 ŷ%, k(u)[2¹W • r̂ (u), with B(u)[B@f5arccosŷ• r̂ (u)#,
r̂ (u)[¹W u/u¹W uu and ŝ(u)[ r̂ (u)3 ẑ. All quantities are di-
mensionless and, in particular, lengths are in units of
channel width (y is length along the channel,x across it,ẑ is
perpendicular to the plates, andf is reinterpreted as the
angle betweenŷ and the normal to the interface!.

We setB051022, which we know to allow stable finger
for the amount of numerical noise present even for vanish
anisotropy@12#. We use two different values of the aniso
ropy, a50.9 anda50.1, to account for the cases with an
without electric field, respectively. The higher anisotro
gives the lowestB at the finger tip that we will need to
resolve, and thus the value of the interface width to usee
50.00625. As for the viscosity contrast, for numerical co
venience we usec50.9, which is known~see, e.g., Ref.@12#!
5-6
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to be sufficiently close to the high viscosity contrast limitc

51 of the experiments.ẽ50.4, which suffices to resolve th
displacement of the liquid crystal by the air. The initial co
dition is a cosine wave of wavelength and amplitude 1~the
channel width! in all cases.

Since the simulations use dimensionless variables, the
fect of the different time scale with or without the electr
field does not show up. To make it apparent, we introd
another dimensionless time increment

Dt8[H Dt when field is off,

aDt when field is on,
~4.3!

wherea53.7 is the measured ratio of the time scale withE
on and that withE off, and we compare runs at a same tim
t8. In this way we compare runs that would have taken
same time in the experiments, since the factor restoring
dimensions is now the same independently of how m
time was the field on or off during each run. Also, the pha
field equations@Eqs. ~4.1! and ~4.2!# are in the reference
frame moving with the mean interface. Since the experim
tal figures are in the lab frame, the numerical sim
lations ~Figs. 5–7! have been translated into the latter f
comparison.

Figures 5 and 7 are the computational, channel analog
of Fig. 1 and Fig. 2, obtained from experiments in the rad
geometry. In Fig. 5~a! we show a wider (a50.1, field off,
l50.588) and a thinner (a50.9, field on,l50.387) finger,
both att857.8, wherel is the finger width. We can see tha
the wider finger does go faster in real time even for t
significant change in width. Therefore, we conclude tha

FIG. 5. Interfaces in the channel geometry, simulated in
reference frame moving with the mean interface and then transl

into the laboratory frame.B051022, e50.006 25,c50.9, ẽ50.4.
~a! Change of width in the stationary pattern att857.8 when chang-
ing from a50.1 ~wider finger! to a50.9 ~thinner finger!. ~b!,~c!
Periodic, instantaneous switch ofa between the two values in~a!,
with a lower ~b!, and a higher~c! frequency. Interfaces are show
each time the field is switched on or off withj50.67, until t8
515.3.
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simultaneous increase in the surface tension anisotropy
the viscosity, does actually explain the fact that fingers
both narrower and slower.

In Fig. 5~b! and Fig. 5~c!, interfaces are shown exactl
each time the anisotropy was changed between the two
ferent values in Fig. 5~a! ~each time the field was switche
on or off!, which was done with a very similar filling coef
ficient than in the experiments,j50.67. This visually leaves
no doubt of the fact that the two different widths in Fig. 5~a!
are successively selected at the tip to produce the patte
Fig. 5~b!. The small mismatch between the tails of the tw
front interfaces in Fig. 5~b! is presumably due to the fact tha
the viscosity contrast is not strictly 1 (c50.9), so that the
dynamics in the tail region is not completely frozen. In F
5~c! the width has no time to relax to any of the two in Fi
5~a!, and gently oscillates in the intermediate range 0.5
,l,0.537. However, the curvature seems to relax m
quickly.

e
ed

FIG. 6. Finger width at one unit length behind the tip and
radius vs rescaled time (t8) for the runs in Fig. 5~b! ~solid lines! and
Fig. 5~c! ~dashed lines!. Recall that the unit length is the chann
width.

FIG. 7. Tip position~y! vs rescaled time (t8) for the runs in Fig.
5. The steeper~less steep! straight, long-dashed line corresponds
the wider~thinner! finger in Fig. 5~a!. The solid and dotted lines in
between correspond to the runs in Figs. 5~b! and 5~c!, respectively.
5-7
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These relaxation processes can be seen in more deta
Fig. 6, where we have monitored the finger width one u
length behind the tip~which is only slightly below the
asymptotic width! and the tip radius. The latter is the inver
of the curvature modulus of the zero level-set of the ph
field @1/uk(u50)u#, and, therefore, of the interface. To avo
spurious lattice oscillations, such a radius is plotted o
when the finger tip hits near a grid point (uuu,1023 at the tip
of the finger!. The solid and dashed lines correspond to
runs in Fig. 5~b! and Fig. 5~c!, respectively. In the case of th
lower frequency~solid lines!, we can see that the tip radiu
relaxes always first to its asymptotic value, and is then
lowed by the finger width as the information of the tip is le
behind. Thus, for the higher frequency~dashed lines!, the
finger has not enough time to relax to its asymptotic widt
but the curvature almost attains its asymptotic values. On
other hand, for the lower frequency it is possible to obse
that the tip widens much faster than it narrows, as can
seen both in the tip width and its radius, but especially in
first. This behavior may be expected in connection with
existence of a set of~unstable! solutions with larger width
than the selected one, whose proximity may effectively sl
down the relaxation dynamics.

Finally, in Fig. 7 we show the evolution of the tip positio
for the runs in Fig. 5. The steeper~less steep! straight, long-
dashed line corresponds to the wider~thinner! finger in Fig.
5~a!, i.e., to the case with the field off~on!. The initial relax-
ation to the stationary velocity is so fast that it is almo
invisible at this scale. The runs in Figs. 5~b! and ~c! corre-
spond to the solid and dotted lines in between, respectiv
We can see that, for the lower frequency~solid line!, the
velocity successively relaxes to the values with or witho
field of the straight, long-dashed lines. Initially, however,
attains a value slightly below~above! the steady velocity
when it relaxes to a lower~higher! velocity. This effect is
more apparent for the relaxation to a lower velocity. In co
trast, for the higher frequency~dotted line!, we are left with
these slightly too low or high initial values of the velocit
since the field is switched on or off again just when t
velocity was about to achieve its asymptotic value. This
quite similar to what happened to the curvature for the hig
frequency~lower dashed line in Fig. 6!, in contrast with the
failure of the finger width to relax~upper dashed line in Fig
6!. So the finger velocity seems to be more correlated to
tip curvature than to the finger width.

In order to compare with the experiments of Rabaudet al.
with two opposite grooves in the channel geometry in wh
they modulated the injection pressure@13#, we have repeated
our simulations changing the dimensionless surface ten
from B051022 to B056.531024 ~with e50.005) and
keeping its anisotropy toa51. Note that, indeed, an instan
change in pressure is equivalent to a change in the time s
and the dimensionless surface tension. In the experimen
Rabaudet al. the modulation was sinusoidal, which also i
troduces an extra time scale, but they nevertheless obta
symmetrical lateral waves of limited amplitude as ours@13#.
In our simulations, we use instant changes in the dimens
less surface tension, and we obtain qualitatively the sa
results than in Fig. 5 and Fig. 7. The instant changes m
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the saturation of the finger width possible, and the fact t
the finger width does saturate to the values with a cons
B0 suggests that the basic mechanism for the lateral wa
observed by Rabaudet al. when modulating the pressur
might also be the relaxation towards two different stea
widths.

V. CONCLUSIONS

We have performed viscous fingering experiments in
radial Hele-Shaw cell, where the more viscous fluid wa
liquid crystal mixture in its nematic phase. After ruling
single groove across the center of the cell, we achie
stable finger tips in the direction of the groove~otherwise
unstable!. By applying an electric field perpendicular to th
cell, we oriented the nematic director in this direction, whi
resulted in thinner and slower fingers. We then periodica
switched on and off the field to find oscillations in the fing
width and velocity, with an amplitude that decreased as
switching frequency was increased.

We explain how fingers are slower when the field is
because the viscosity of the liquid crystal is higher with t
director perpendicular to the cell, and that the reason w
they are thinner may be attributed to an increase in the
isotropy due to the groove when the field is on. Also t
surface tension is reduced when the field is switched on,
it cannot affect so strongly the finger width, since no sign
cant width change was observed by increasing the ex
pressure, and both a decrease in the surface tension an
increase in the excess pressure would lower the dimens
less surface tension. The proposed scenario reproduce
experimental observations, as shown by numerical integ
tion in the channel geometry of a simplified theoretic
model. We also explain the finger width and velocity osc
lations as the result of the relaxation back and forth betw
the selected tip radii and velocities with the field on and o
as suggested by the experiments and clearly seen in the
merical integration of the theoretical model.

We discuss how this latter result might be relevant
experiments with a bubble on the tip of a finger and es
cially when modulating the injection pressure in a chan
with two parallel grooves@4,5,13#. We reproduce the quali
tative observation that the lateral waves are symmetric an
limited amplitude for such a pressure modulation by simu
tions instantly changing the dimensionless surface tens
We point out that the amplification of small tip perturbatio
describing natural, noise-induced side branching, and
successive relaxations between to steady widths descri
the formation of lateral undulations when periodically chan
ing a control parameter seem to be two complement
mechanisms for lateral wave formation, and that experime
forcing the dynamics with large perturbations might be u
derstood as mixed cases.
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@9# V. Horváth, T. Vicsek, and J. Kerte´sz, Phys. Rev. A35, 2353

~1987!.
@10# M. Matsushita and H. Yamada, J. Cryst. Growth99, 161

~1990!.
@11# See, e.g., A´ . Buka, in Pattern Formation in Liquid Crystals,
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